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Abstract 

We propose a novel method to analyze interval-censored data. The modeling framework follows a multiple 

imputation approach based on a Heteroskedastic Interval regression. The proposed model aims to obtain 

synthetic datasets that can be used to implement standard regression analysis. We present three applications 

to show the performance of our method. First, we run a Monte Carlo Simulation to show the method's 

performance under the assumption of conditional normality. Second, we analyze income inequality using 

the Current Population Survey - Annual Social Economics Supplement, comparing estimates for imputed 

and observed data when the assumption of normality might not hold. Finally, we apply the proposed 

methodology to analyze labor income data in Grenada for 2013-2020, where the salary data are interval-

censored according to the salary intervals prespecified in the survey questionnaire. The results obtained are 

consistent across all three exercises. 
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1. Introduction 

Labor force household surveys are a useful source to understand employment dynamics in both 

developing and developed countries. These surveys provide vast information of the labor market 

at higher frequency levels (in comparison with living condition surveys) and, in some cases, are 

the only source of information to describe and examine the status and structure of the labor market. 

In fact, in the Latin American and the Caribbean region, the OECS countries, together with other 

countries like Bolivia, Costa Rica, Ecuador, Jamaica, Mexico, Peru, and Uruguay, all collect their 

labor force surveys quarterly as oppose as a yearly basis, which is the case of most Household and 

Living standard surveys. One of the key features of these labor surveys is that they provide 

information on the wage and salaries of workers, which allow, in some cases, to estimate official 

poverty and inequality measures. However, many countries cannot retrieve the full income 

distribution due to how the collection and reporting of earned income are carried out (in brackets). 

This is the case of the labor force survey for all countries in the Organization of Eastern Caribbean 

States (OECS), for which labor income is collected in brackets to create a sense of anonymity of 

the data. Colombia, Germany, Australia, and New Zealand have similar data collection protocols 

for their micro census, along with (Walter and Weimer 2018). Moreover, the same issue arises 

with health and mortality data in many Demographic and Health Surveys (DHS), such as the one 

in Nigeria, for which, due to some practical restrictions, the survival time of the children are only 

recorded in months or years, which makes it an interval-censored data structure (Chen and Zhao 

2021).   

 

One argument in favor of these types of survey questions is that when respondents are asked to 

report amounts, these are subject to high rates of non-response in the variable of interest, in this 

case, income (Wang et al., 2013). In the survey literature, it is well-known that questions about 

income are considered "sensitive"; therefore, the non-response rate is considerably higher for these 

questions (Moore et al., 2000; Hagenaars and Vos, 1988). Field tests conducted in the past have 

shown that asking follow-up income questions in a series of unfolding brackets achieve superior 

results in terms of response rates for income amounts, as was the case of the National Health 

Interview Survey (NHIS) and the Behavioral Risk Factor Surveillance System Survey (BRFSS), 

both administered by the Center for Disease Control and Prevention of the United States (Angelov 



and Ekstrom 2018, Yan et al. 2018). However, even though this form of data collection solves the 

problem of underreporting or miss reporting, it implies a problem for recovering the full wage 

(income) distribution that is useful to study poverty and inequality, which are calculated in most 

cases through an income aggregate.  

Different approaches exist to recover the full distribution and estimate indicators from interval-

censored data; most rely on parametric methods. In this sense, Chen (2017) provides a generalized 

approach to multinomial maximum likelihood estimation for several types of grouped data and 

shows its consistency through complementary simulation results. Chih-Yuan et al. (2021) rely on 

regression analysis for quantile functions where the quantile regression coefficients are treated as 

functions over a continuum of quantile levels. With this method, they propose a general inference 

procedure for quantile regression coefficient functions with interval-censored outcome data using 

a survey on monthly salaries of Taiwan workers, where only parts of the salary data are exact. In 

contrast, the others are interval-censored according to the salary intervals prespecified in the 

survey questionnaire. Along this line, Zhou et al. (2017) propose an estimation method for quantile 

regression models with interval-censored data considering asymptotic normality's property and 

two bias correction methods.  

 

Other studies, like the one proposed by Han et al. (2020), construct new measures of the income 

distribution and estimate poverty in the U.S. with a lag of only a few weeks using high-frequency 

data from the Basic Monthly Current Population Survey (CPS), to understand the impact of the 

Covid-19 pandemic. A similar case is proposed by Parolin and Wimer (2020), who produce 

monthly updates of SPM poverty rates with demographic data from the monthly Current 

Population Survey (CPS) and data on SPM poverty from the previous CPS ASEC.  Using ten years 

of prior data, validation tests demonstrate that this methodology estimates poverty rates that 

closely track observed poverty rates released nearly ten months later. However, these studies seek 

to obtain income estimates using the uncensored distribution of previous years, which is not always 

available with other data sources, like the ones analyzed in this paper.  

 

To measure income inequality with right-censored (top-coded) data, Jenkins et al. (2011) propose 

multiple-imputation methods for estimation and inference where censored observations are 



multiply imputed using draws from a flexible parametric model fitted to the censored distribution, 

yielding partially synthetic data. In order to analyze wages in the German IAB employment survey 

and solve the problem of censored wages, Buutner and Rassler (2008) derive new multiple 

imputation approaches to impute the censored wages by draws of a random variable from a 

truncated distribution based on Markov chain Monte Carlo techniques. Moreover, using data from 

the German micro census, which also reports income in brackets, Walter and Weimer (2018) 

propose an iterative kernel density algorithm that generates metric pseudo samples from the 

interval-censored income variable to estimate poverty and inequality indicators. However, most of 

the studies found in the literature focus on estimation of and inference about mean incomes and 

income regressions for a single year rather than estimates of income inequality and trends. 

To address this issue, we propose an interval imputation method to retrieve the income distribution 

of the labor income variable using a Labor Force Survey in Grenada and the US CPS data for 

sensitivity analyses.  The method relies on an interval regression, often known as a generalization 

of the censored regression estimators. We model the probability that a person's income be within 

the underlying income brackets with this method. Once we get the full sample of imputed data, we 

can then analyze the trends in labor income, the evolution of wages in a given country and perform 

standard inequality estimates.  

 

The paper is organized as follows.  Section 2 introduces the model and the econometric issues 

associated with the imputation method; Section 3 provides three exercises to assess the 

performance of the model; a Monte Carlo simulation using the Swiss Labor Market Survey of 

1998; an analysis of income inequality using the Current Population Survey - Annual Social 

Economics Supplement of 2020 and finally, an analysis of labor income trends and income 

inequality in Grenada using the 2013-2020 series of the Labor Force Survey. Section 4 concludes.  

 

2. Methodology 

To address the problem of interval-censored data, we propose a multiple imputation approach 

based on a Heteroskedastic Interval regression model. An interval regression model is a 



generalization of the Tobit model that allows using a mixture of censored and completely observed 

data, even if the censoring thresholds are unique to each individual. The goal of the model is to 

find a set of parameters that maximizes the probability that, given a set of characteristics, the 

predicted latent earnings fall within the declared earning threshold. Predicted earnings can be 

obtained using the estimated parameters based on random draws of the estimated conditional 

distributions. 

2.1. Interval regression model 

Assume that (log) earned income (𝑦𝑖) has a data generating process such that: 

𝑦𝑖 = 𝜇(𝑥𝑖) + 𝑣𝑖𝜎(𝑥𝑖) (1) 

𝑣𝑖 is a homoscedastic i.i.d. error, with mean 0 and standard deviation 1, that is independent of the 

characteristics 𝑥. 𝜇(𝑥𝑖) and 𝜎(𝑥𝑖) are flexible functions of 𝑥𝑖. 𝜇(𝑥𝑖) represents the conditional 

mean of 𝑦𝑖, and 𝜎(𝑥𝑖) is a strictly positive function that represents the conditional standard 

deviation of 𝑦𝑖. Following Machado and Santos-Silva (2019), the conditional mean 𝜇(𝑥𝑖) captures 

location shift effects of characteristics on the outcome, whereas 𝜎(𝑥𝑖) capture the scale shits, which 

relates to how much of the spread is explained by differences in characteristics. Under the 

assumption that 𝑣𝑖 follows a standard normal distribution, 𝑦𝑖|𝑥𝑖 is also normally distributed with 

mean 𝜇(𝑥𝑖) and standard deviation 𝜎(𝑥𝑖). 

𝑖𝑓 𝑣𝑖~𝑁(0,1) → 𝑦𝑖|𝑥𝑖 = 𝑥~𝑁(𝜇(𝑥). 𝜎(𝑥)) (2) 

And equation one can be estimated via maximum likelihood by maximizing the following 

function: 

𝐿𝑖(𝜇(𝑥), 𝜎(𝑥)) = 𝑓𝑦|𝑥(𝜇(𝑥), 𝜎(𝑥)) =
1

𝜎(𝑥)
𝜙 (

𝑦𝑖 − 𝜇(𝑥)

𝜎(𝑥)
) (3a) 

𝜇(𝑥), 𝜎(𝑥) = max
1

𝑁
∑ log(𝐿𝑖) (3b) 



Under these conditions, and assuming a flexible enough model specification to capture the 

conditional mean and conditional variance, estimating equation (1) allows us to recover the whole 

distribution of the dependent variable 𝑦𝑖.  

When 𝑦𝑖 is fully observed, this variable can be directly used for estimating any measure of Poverty 

P or Inequality I, or to analyze the relationship between observed characteristics 𝑋 and the outcome 

𝑦, using standard statistical methods. Often, however, due to survey design, one may only have 

access to data reported in brackets. In other words, rather than observing 𝑦𝑖, one may only observe 

that reported income by individual  𝑖 is within some lower (𝑙𝑙𝑖) and upper (𝑢𝑢𝑖) threshold, which 

may be different for each individual. In this case, unless 𝑙𝑙𝑖 = 𝑢𝑢𝑖, the likelihood function defined 

by Equations 3a and 3b is not defined.  

An alternative for estimating a model with this type of data is the use of what is known as interval 

regression. Interval regression is a generalization of the censored regression estimators like the 

Tobit model (see Cameron and Trivedi (2010) ch 16 for a discussion of censored regressions), 

where data can be a mixture of censored-left censored, right-censored, interval-censored, or fully 

observed. For simplicity, we refer to the case with interval-censored data.   

When the data is interval-censored, rather than modeling the outcome itself, the interval regression 

approach focuses on modeling the probability that an individual 𝑖 reports income to be within the 

underlying income brackets: 

𝑃(𝑙𝑙𝑖 ≤ 𝑦𝑖 < 𝑢𝑢𝑖|𝑥𝑖) (4) 

Using the data generating process defined by equation 4, and the normality assumption of the 

error 𝑣𝑖, equation (4) can be rewritten as: 

𝑃 (
𝑙𝑙𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
≤ 𝑣𝑖  <

𝑢𝑢𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
|𝑥𝑖) = P (𝑣𝑖  <

𝑢𝑢𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
) − P (𝑣𝑖  <

𝑙𝑙𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
) (5𝑎) 

= Φ (
𝑢𝑢𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
) − Φ (

𝑙𝑙𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
) (5𝑏) 



Where Φ(. ) is the cumulative normal density function. Using equation (5b), the loglikelihood 

function that is maximized to identify the parameters 𝜇(𝑥𝑖) and 𝜎(𝑥𝑖) is defined as: 

𝐿𝑖(𝜇(𝑥), 𝜎(𝑥)) = Φ (
𝑢𝑢𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
) − Φ (

𝑙𝑙𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
)  𝑖𝑓 data is interval − censored (6a) 

𝐿𝑖(𝜇(𝑥), 𝜎(𝑥)) = Φ (
𝑢𝑢𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
)  𝑖𝑓 data is left −  censored (6b) 

𝐿𝑖(𝜇(𝑥), 𝜎(𝑥)) = 1 − Φ (
𝑙𝑙𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
)  𝑖𝑓 data is right − censored (6c) 

Which can be used to obtain estimates for 𝜇(𝑥) and 𝜎(𝑥) using maximum likelihood estimation. 

2.2. Model Imputation.  

As previously described, when dealing with interval-censored data, we have limited access to the 

observed distribution of the variable of interest. This is in contrast with standard multiple 

imputation analysis, where the variable of interest is fully unobserved. This distinction's 

implications on the Imputation strategy are related to the appropriate draw of the imputed error. 

Consider the d.g.p again. stated in equation 1, and define 𝑦𝑖
∗ to be the true but unobserved variable 

of interest. By definition, if the data is interval-censored, the range of values that can be potentially 

used to impute 𝑦𝑖
∗ are bounded between the lower and upper threshold of a given interval. In 

addition, conditional on the observed characteristics 𝑥, and the parameters 𝜇(𝑥𝑖) and 𝜎(𝑥𝑖), it 

implies that the unobserved error 𝑣𝑖
∗ is also bounded: 

𝑣𝑖
∗ ∈ [

𝑙𝑙𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
,
𝑢𝑢i − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
] (7) 

Furthermore, under the assumption that 𝑣𝑖 follows a standard normal distribution, we can impute 

values for 𝑦𝑖
∗, by simply getting random draws for 𝑣𝑖

∗ from a truncated random normal distribution: 



�̃�𝑖 = Φ−1(𝑟𝑖), where 𝑟𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (Φ (
𝑙𝑙𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
) , Φ (

𝑢𝑢i − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
)) (8) 

Where Φ−1(𝑟𝑖) corresponds to the 𝑟𝑡ℎ quantile for the standard normal distribution. Finally, the 

imputed value for the outcome of interest  𝑦𝑖
∗ is given by: 

�̃�𝑖 =  𝜇(𝑥𝑖) + �̃�𝑖𝜎(𝑥𝑖) (9) 

Because the population parameters 𝜇(𝑥𝑖) and 𝜎(𝑥𝑖) are unknown, we use the sample equivalents 

that are estimated using the interval regression estimator via Maximum likelihood.4 To account for 

the uncertainty of the regression estimation, we obtain random draws from the following joint 

normal distribution: 

[
𝜇(𝑥)

�̃�(𝑥)
] ~𝑁 (

�̂�(𝑥)

 �̂�(𝑥)
, Ω̃) ;   Ω̃ = Ω̂ ∗

𝑛

�̃�
; �̃�~𝜒𝑛

2 (10) 

Where Ω̂ is the ML variance-covariance matrix estimate, 𝑛 is the number of observations in the 

sample, and  �̃� is a random draw from a chi distribution 𝑛 degrees of freedom. Finally, the 

imputation for 𝑦𝑖
∗ will be given by: 

�̃̃�𝑖 = 𝜇(𝑥𝑖) + �̃̃�𝑖 �̃̃�(𝑥𝑖) (11𝑎) 

�̃̃�𝑖 = Φ−1(�̃�𝑖), where 𝑟𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (Φ (
𝑙𝑙𝑖 − 𝜇(𝑥𝑖)

�̃�(𝑥𝑖)
) , Φ (

𝑢𝑢𝑖 − 𝜇(𝑥𝑖)

�̃�(𝑥𝑖)
)) (11𝑏) 

Where �̃̃�𝑖 is used in (11a) instead of �̃�𝑖, to account for the role of the estimated parameters on the 

error �̃�. 

In summary, the imputation algotithm is as follows: 

1. Estimate the parameters associated with 𝜇(𝑥) and 𝜎(𝑥) using a heteroskedastic interval 

regression approach via maximum likelihood. 

 

4 For numerical purposes, it is also important to emphasize that 𝜎(𝑥𝑖) is not estimated directly, but ln 𝜎(𝑥𝑖) is 

estimated instead.  

 



2. Obtain �̃� from a random draw from 𝜒𝑛
2, and estimate Ω̃. 

3. Obtain a random draw for 𝜇(𝑥) and �̃�(𝑥) from 𝑁 (
�̂�(𝑥)

 �̂�(𝑥)
, Ω̃). 

4. Obtain random draws for �̃̃�𝑖, conditional on 𝜇(𝑥) and �̃�(𝑥), for each observation 𝑖. 

5. Get the full sample of imputed data �̃̃�𝑖. 

6. Repeat steps 2-4 M times and obtains M sets of imputed samples.  

Steps 2-4 corresponds to simulating from the posterior distribution, similar to what is described in 

Gelman et al. (2014).  

2.3. Model estimation and inference 

Once all the M imputed datasets have been obtained, statistical analysis can be done by 

independently implementing the desired model estimation across all M imputed samples. The 

aggregation and summary from the M estimated models could then be done applying the 

combination rules described in Rubin (1987).  

Let 𝛽 be the set of parameters of interest, and �̂�𝑚 and �̂�𝑚 be the set of estimated coefficients and 

corresponding variance-covariance matrix obtained using data with simulated sample 𝑚. The 

Multiple imputation estimates �̂�𝑀 for the parameter of interest is given by: 

�̂�𝑀 =
1

𝑀
∑ �̂�𝑚

𝑀

𝑚=1

(13) 

Whereas the variance-covariance estimate �̂�𝑀 is given by: 

�̂�𝑀 =
1

𝑀
∑ 𝑉𝑚

𝑀

𝑚=1

+ (
𝑀 + 1

𝑀
)

(�̂�𝑚 − �̂�𝑀)′(�̂�𝑚 − �̂�𝑀)

𝑀 − 1
  (14) 

4. Applications 

To show the performance of the proposed method, this section presents three applications 

illustrating the methods proposed in section 3.4.1.  A Monte Carlo Simulation 



The first application is designed to study the performance of the proposed methodology under the 

assumption that the d.g.p. follows a conditionally normal distribution. To capture the kind of 

process we may be expected to see when using real data, the simulation is constructed using an 

Excerpt from the Swiss Labor Market Survey 1998. This is a small dataset, 1434 observations with 

declared wages, readily available online (Jann, 2003). Simulated data is obtained using the 

following procedure. 

i. Estimate a Heteroskedastic linear regression model for wages, where the conditional mean 

and log variance are modeled as linear functions of age, education, experience, tenure, 

gender, and marital status, including all their interactions. Using this, obtain point 

predictions for the conditional mean 𝜇(𝑥) and conditional log variance 𝑙𝑛𝜎2(𝑥). 

ii. Using the predicted conditional mean and log variance, obtain draws for simulated wages 

from a random log-normal distribution. 𝑙𝜔�̂�~𝑁(�̂�(𝑥), �̂�2(𝑥)), 𝑤𝑖 = exp(𝑙𝜔𝑖). This 

provides a dataset with simulated wages. 

Once simulated wages 𝑤𝑖 are obtained, interval censored wages are created using the following 

rules: 

Table 1 Interval Censoring 

Wage Group Lower 

Bound 

Upper 

Bound 

Proportion 

1 0 10 3.3 

2 10 20 17.1 

3 20 30 28.8 

4 30 40 25.0 

5 40 60 20.6 

6 60 80 4.0 

7 80 . 1.3 
Note: The last column shows the approximate distribution of 

observations that fall within each wage bracket. 

 

Where Group 7 has no upper limit wage.  

We repeat steps 2 and 3 to obtain 5000 independent samples. Figure 1 shows the distribution of 

the simulated wages (log scale) and the cuts used for the income brackets: 



Figure 1 Simulated Wage distribution 

 

We apply the proposed imputation procedure for each simulated dataset, using the log of the upper 

and lower bounds for each bracket, and obtain ten simulated wages. This leaves the lower bound 

for group 1 to be unbounded. Rather than using the same set of explanatory variables used in the 

wage simulation, we use a simplified specification where the 𝜇(𝑥) and ln 𝜎(𝑥) are modeled as a 

function of education, experience, tenure, gender, age, and age squared. We do this because this is 

a common specification used in applied labor applications. Furthermore, it simulates the scenario 

where the imputation model specification is misspecified because we never observe true d.g.p.5 

To test the performance of the procedure, we estimate selected distributional coefficients using 

both the fully observed data and the imputed data using our proposed procedure. Population 

parameters are obtained by using pooled data from all 5000 simulated samples. The results are 

provided in table 2. 

 

Table 2 Simulation Results: Selected Distributional Statistics 

 Population  Full Observed Data 

 

5 The estimation of the Heteroskedastic Interval regression model is done using Stata’s -intreg-. The imputation 

procedure is done using the command intreg_mi.ado, available upon request. 



 Parameters Mean RMSE Rel Bias p2.5 p97.5 

Gini 0.259 -0.0002 0.0051 -0.1% -3.8% 3.9% 

Entropy(1) 0.112 0.0000 0.0074 0.0% -8.5% 11.2% 

Atkinson(1) 0.114 -0.0001 0.0046 -0.1% -7.4% 8.2% 

10th Quantile 15.094 0.0283 0.4011 0.2% -5.0% 5.5% 

90th Quantile 52.017 0.0330 0.9061 0.1% -3.3% 3.6% 

Lorenz Ordinate 25p 0.120 0.0001 0.0021 0.1% -3.3% 3.4% 

1-Lor Ordinate 80 0.347 -0.0001 0.0043 0.0% -2.3% 2.5% 

Pov Gap Z=25 0.100 0.0000 0.0039 0.0% -7.9% 7.7% 

 Population  

Parameters 

Imputed Data 

 Bias RMSE Rel Bias p2.5 p97.5 

Gini 0.259 -0.0005 0.0053 -0.2% -4.2% 3.8% 

Entropy(1) 0.112 -0.0011 0.0053 -1.0% -9.7% 8.6% 

Atkinson(1) 0.114 -0.0028 0.0053 -2.5% -10.3% 5.6% 

10th Quantile 15.094 0.1068 0.3784 0.7% -4.0% 5.6% 

90th Quantile 52.017 0.1691 0.8248 0.3% -2.7% 3.4% 

Lorenz Ordinate 25p 0.120 0.0008 0.0023 0.6% -2.9% 4.4% 

1-Lor Ordinate 80 0.347 0.0001 0.0042 0.0% -2.3% 2.5% 

Pov Gap Z=25 0.100 -0.0007 0.0043 -0.7% -9.2% 7.8% 

In general, the distributional statistics estimated with the interval censored-imputed data seem to 

closely reproduce the population parameters, albeit with a larger bias than the estimates that use 

observed data. The expected bias is small and close to zero, with the largest relative bias observed 

for the Atkinson and Entropy Indices. Interestingly, the root means squared error (RMSE) for the 

imputed and observed data are similar, with no clear advantage between imputed and fully 

observed data, despite the bias.  

To compare the magnitude of the bias, we also include statistics of the average, the 2.5%, and 

97.5% percentiles of the relative bias for the parameters based on imputed and fully observed data. 

While this also shows that imputed data suffers from a small bias, particularly for the Atkinson 

index, the distribution of such bias is comparable across both surveys. 

For a visual inspection of the bias distribution, Figure 2 provides densities plots for the distribution 

of relative bias for all statistics across both samples. They further confirm that the Atkinson index 

is estimated with the largest bias, but the bias distribution appears symmetric for all other statistics, 

with a small bias for the Lorenz ordinate and the poverty gap.  



Figure 2 Distribution of Relative Bias 

 

Since the analysis of this type of data usually requires an estimation of different models, we also 

estimate a few selected models with a limited set of explanatory variables, comparing the results 

using imputed and fully observed data. Because we use a miss-specified, the underlying 

assumption is that estimated parameters based on pooled observed data to be the truth. Table 3 

summarizes these results. We compare the results for linear regression and quantile regressions at 

the 20th and 80th conditional quantiles. 

Table 3 Regression analysis: Imputed vs. Observed Data 

 Population 

 Parameter 

Observed  Imputed 

 E(Bias) RMSE E(Bias) RMSE 

Linear Regression      

Education 1.8341 -0.0048 0.2134 -0.0066 0.2042 

Experience -0.1922 -0.0020 0.0650 -0.0025 0.0646 

Tenure 0.1473 -0.0004 0.0593 -0.0019 0.0618 

Female=1 -3.5227 -0.0049 0.7467 0.0037 0.7723 

Age 1.9799 -0.0042 0.2698 -0.0099 0.2681 



Age^2 -0.0189 0.0001 0.0034 0.0002 0.0035 

Constant -31.6772 0.1550 5.1524 0.2642 4.9147 

Quantile 

Regression 20th      

Education 1.4619 0.0018 0.1693 -0.0328 0.1596 

Experience 0.0395 -0.0001 0.0592 -0.0108 0.0569 

Tenure 0.1440 -0.0016 0.0540 0.0014 0.0504 

Female=1 -5.5125 -0.0007 0.6559 -0.0845 0.6222 

Age 2.1012 -0.0010 0.2012 -0.0181 0.1914 

Age^2 -0.0241 0.0000 0.0025 0.0004 0.0024 

Constant -36.2430 -0.0060 3.5739 0.6063 3.4892 

Quantile 

Regression 80th      

Education 2.3336 -0.0157 0.3081 -0.0434 0.2904 

Experience -0.3333 -0.0033 0.0944 -0.0042 0.0889 

Tenure 0.1307 0.0016 0.0948 -0.0018 0.0892 

Female=1 -1.5361 -0.0080 1.1368 0.0670 1.1052 

Age 2.0218 -0.0099 0.3805 -0.0102 0.3584 

Age^2 -0.0166 0.0001 0.0048 0.0001 0.0045 

Constant -32.6795 0.4011 6.7428 0.7731 6.1467 

As expected, we observe negligible bias across estimated coefficients when using observed data. 

The bias, however, is somewhat larger when using our proposed imputation procedure, especially 

when looking at the quantile regression estimates. However, the imputed data has some 

disadvantages in terms of RMSE and often seems better than using fully observed data. This may 

be explained because the Monte Carlo simulation assumes that characteristics are kept fixed across 

all subsamples.  

4.2. Analyzing Earning Income Inequality using Current Population Survey - Annual 

Social Economics Supplement (CPS-ASEC) 

The CPS-ASEC is a monthly survey administered by the Bureau of Labor Statistics, and it is used 

to assess personal and labor market characteristics for people living in the U.S.  In March of every 

year, approximately 60 thousand households are interviewed, with detailed information on income 

by source over the last fiscal year. In this exercise, we use the proposed methodology to analyze 

income inequality, comparing estimates for imputed and observed data estimates, assuming that 

total household income is available only in brackets, using the same thresholds that the CPS uses 



to report household income in other months. In this exercise, we use sampling weights to estimate 

the interval regression model and use 25 imputed values per household.  

In contrast with the Monte Carlo simulation exercise, we do not know the true d.g.p. which implies 

that the assumption of conditional (log) normality of household income may not hold, and the 

imputation and estimated models are likely to be miss-specified. In addition, we can only make 

one comparison between the imputed and observed statistics. 

All imputations are done at the family level, excluding from the sample households with total 

income lower than 150$ per year. 6 For the interval regression approach, we use age, education, 

race, and job market status over the last year for the head of the household, family structure 

characteristics, and state-level dummies to model both the conditional mean and conditional 

variance. Figure 3 shows the distribution of log household income, as well as the thresholds used 

for the interval-censored data: 

Figure 3 Distribution of Log Household Income 

 

To assess the performance of the imputation strategy, similar to the previous section, we estimate 

various inequality statistics, which are provided in table 4. Overall, the statistics based on imputed 

 

6 This eliminates 1298 households from the sample. 



values are very similar to those based on the observed data. The relative gaps are smaller than 5%, 

compared to the observed data statistics, across all statistics except for the Atkinson and Entropy 

indices, and closely followed by the Share of income held by the richest 10% of households, 

possibly overestimating inequality levels. Regarding the precision of the estimates, the standard 

errors are generally smaller when observed data is used, except for quantile statistics.  

Table 4 Selected Summary Statistics 

 Imputed Observed Ratio 

Mean 43795.2 43480.9 1.007 

 (210.6) (198.1)  

10th Quantile 9393.4 9470.3 0.992 

 (79.7) (80.5)  

50th Quantile 30707.2 30982.2 0.991 

 (147.9) (154.6)  

90th Quantile 87429.0 89630.9 0.975 

 (507.5) (659.2)  

Gini Coefficient 0.4647 0.4534 1.025 

 (0.0018) (0.0016)  

Atkinson (1) 0.3373 0.3186 1.059 

 (0.0021) (0.0019)  

Entropy (1) 0.4015 0.3606 1.113 

 (0.0048) (0.0038)  

Lorenz (20) 0.0401 0.0411 0.976 

 (0.0003) (0.0003)  

1-Lorenz(90) 0.3432 0.3276 1.048 

 (0.0020) (0.0018)  

Note: Statistics correspond to total household income, weighted 

at the household level. Standard errors in parenthesis. 

In addition to the comparison of unconditional distribution Statistics, we can also assess the 

performance of the imputation procedure comparing conditional distributions. Table 5 compares 

estimated models using both observed and imputed data, linear regression, and quantile regressions 

at the 10th and 90th quantiles. 

Overall, the results are promising. Across most models, the ratios between imputed to observed 

models fall within 5% from each other.   Across all three models, the largest divergences are 

observed for the Region coefficients, although the absolute magnitudes are negligible. Also, in 

contrast with the unconditional statistics, we observe that the standard errors are often larger when 

using imputed data than observed data. 



Table 5 Selected Regression analysis comparison 

Variable Linear Regression  QREG 10th  QREG 90th  

 Observed Imputed Ratio Observed Imputed Ratio Observed Imputed Ratio 

Age HH 0.012 0.011 0.96 0.015 0.014 0.96 0.011 0.011 1.01 

 (0.0003) (0.0003)  (0.0005) (0.0006)  (0.0005) (0.0006)  
Sex HH:Female=1 -0.187 -0.195 1.04 -0.260 -0.259 1.00 -0.141 -0.159 1.13 

 (0.008) (0.008)  (0.015) (0.017)  (0.013) (0.015)  
Race HH:white=1 0.196 0.195 0.99 0.253 0.248 0.98 0.162 0.163 1.00 

 (0.011) (0.011)  (0.021) (0.022)  (0.015) (0.021)  
Educ HH (Base LTHS)          
High School 0.404 0.395 0.98 0.406 0.404 0.99 0.348 0.374 1.08 

 (0.018) (0.017)  (0.028) (0.034)  (0.030) (0.030)  
Scoll 0.649 0.639 0.98 0.630 0.640 1.02 0.579 0.613 1.06 

 (0.018) (0.017)  (0.029) (0.035)  (0.030) (0.031)  
College+ 1.115 1.102 0.99 1.071 1.069 1.00 1.091 1.120 1.03 

 (0.017) (0.017)  (0.027) (0.033)  (0.030) (0.031)  
HH Employed  0.559 0.546 0.98 0.756 0.776 1.03 0.355 0.363 1.02 

 (0.011) (0.010)  (0.021) (0.025)  (0.015) (0.019)  
Log (famsize) -0.403 -0.412 1.02 -0.422 -0.425 1.01 -0.455 -0.444 0.98 

 (0.008) (0.008)  (0.013) (0.015)  (0.014) (0.017)  
Division (Base NorthEast)         
MidWest -0.071 -0.073 1.03 -0.030 -0.025 0.84 -0.129 -0.138 1.08 

 (0.014) (0.014)  (0.025) (0.027)  (0.020) (0.027)  
South -0.105 -0.108 1.04 -0.074 -0.072 0.97 -0.112 -0.135 1.20 

 (0.012) (0.012)  (0.022) (0.025)  (0.019) (0.021)  
West -0.024 -0.025 1.02 -0.013 -0.006 0.45 -0.041 -0.049 1.19 

 (0.013) (0.013)  (0.023) (0.026)  (0.020) (0.023)  
Constant 8.921 8.999 1.01 7.729 7.752 1.00 10.096 10.101 1.00 

 (0.030) (0.029)  (0.054) (0.059)  (0.046) (0.051)  

 

4.3. Wage Inequality in Grenada 

The final illustration focuses on an empirical application used in the Grenada Poverty Assessment 

of 2021 (forthcoming) to describe wage inequality trends in the country between 2013 and 2020 

using the annual Labor Force Survey. This survey provides information on the labor market in the 

country and is the only source of information that can be used to describe the status of the labor 

market and the distribution of income in the country.  

One major limitation of this survey, however, is the collection of earned income data. Compared 

to standard household surveys or labor force surveys in most developed countries, earned income 

recorded in the LFS in Grenada is available in brackets. Furthermore, there is a large proportion 

of the employed population who do not declare their income. Table 6 provides an overview of the 

earned income distribution across time. 



Table 6 Earned Income distribution by year 

Year 2013 2014 2015 2016 2017 2018 2019 2020 

>200 3.0 1.2 3.7 3.5 1.4 0.2 0.0 0.4 

200-399 6.9 5.8 6.3 5.3 4.1 1.6 1.2 1.1 

400-799 15.4 15.9 12.3 14.2 13.7 9.0 8.3 10.3 

800-1199 19.1 20.0 18.3 18.7 21.1 20.4 23.8 24.6 

1200-1999 17.7 17.4 13.9 13.1 18.4 14.7 14.9 15.9 

2000-3999 15.6 11.3 11.2 11.5 10.5 9.7 12.8 11.8 

4000-5999 2.6 2.4 2.4 2.2 2.2 1.6 1.2 2.1 

6000+ 2.0 1.2 0.6 0.6 0.7 1.0 1.0 0.5 

Not stated 17.7 24.8 31.3 30.9 27.9 41.8 36.7 33.2 

In this case, we face two types of problems. On the one hand, we only had access to interval-

censored data, which is insufficient to analyze changes in the distribution of earnings in the 

country, and, on the other hand, we have an increasing proportion of individuals who do not declare 

income. We apply the imputation procedure previously described to address both problems, 

estimating the interval-censored regression for each year, with a set of household-level 

characteristics and job type characteristics. The sample of interest includes all adults who declared 

to be employed and stated their income. 

We make the simplifying assumption that not stating income is randomly distributed conditional 

on observed characteristics. To account for the fact that characteristics may differ across those who 

state and do not state their incomes, an inverse probability weighting strategy is used to estimate 

the interval regression model. Finally, the imputation procedure is implemented as discussed in 

section 3 but assuming no lower and upper bounds for the imputed wages. Nevertheless, the 

maximum imputed wage for those who do not state their income is capped at the maximum 

predicted among those who declare their income. In all cases, imputed earnings are adjusted by 

inflation. 



Figure 4 Average Monthly Earnings by Year and Gender 

 

The results suggest that after a small decline in average real monthly earning from 2013 to 2016, 

there was a slight improvement in the following two years, with a small decline in 2019, with 

average wages remaining at stable levels in 2020, despite the Covid-19 pandemic.7 The results 

also suggest that the gender earnings gap has shown a somewhat increasing trend between 2013 

and 2019, although it predicted a small decline in 2020. 

 

7 This estimate does not take into account the decline in labor force participation observed during the pandemic. 



Figure 5 Selected Quantiles and Gini coefficient across Years 

 

In terms of inequality, the estimates suggest that it has declined substantially across the years. The 

estimated Gini coefficient fell from 44.2 Gini points in 2015 to 34.1 in 2019, with a small increase 

in 2020. This decline in inequality seems to have been driven by faster growth in the lower and 

middle sections of the wage distribution and a small decline in the upper section of the distribution. 

4. Conclusion 

A shred of vast evidence on methods used to deal with censored data in surveys is found in the 

literature. However, most of them are intended to estimate income or wages using the uncensored 

distribution of previous years, which is not always available with other data sources. In other 

studies, authors focus on estimation of and inference about mean incomes and income regressions 

for a single year rather than estimates of income inequality and trends, as we do with our analysis.  

We present an imputation strategy that can be used to analyze interval-censored data from 

household surveys or labor market surveys. The goal of the model is to find a set of parameters 

that maximizes the probability that, given a set of characteristics, the predicted latent earnings fall 

within the declared earning threshold. We describe that when dealing with interval-censored data, 



we have limited access to the observed distribution of the variable of interest, in contrast with 

standard multiple imputation analysis, where the variable of interest is fully unobserved. We 

propose a multiple imputation strategy using a heteroskedastic interval regression approach via 

maximum likelihood to overcome this. Once the imputed income has been obtained, statistical 

analysis can be done by independently implementing the desired model estimation across all 

imputed samples. To assess the consistency of our method, we perform simulations and analyze 

income trends and income inequality using three different sources of data.  

The results of the simulation study can be summarized as follows: 

The first application, using data from the Swiss Labor Market Survey of 1998, assesses the 

performance of the proposed methodology under the assumption that the d.g.p. follows a 

conditionally normal distribution. Simulated data is obtained using a Heteroskedastic linear 

regression model for wages, where the conditional mean and log variance are modeled as linear 

functions of observed characteristics. Using the predicted conditional mean and log variance, we 

obtain simulated wages from a random log-normal distribution providing a dataset of simulated 

wags; further, we create interval-censored wages with these simulated wages. In general, the 

distributional statistics estimated with the interval censored-imputed data seem to closely 

reproduce the population parameters, albeit with a larger bias than the estimates that use observed 

data. 

For the second application, using the CPS-ASEC survey from the Bureau of Labor Statistics, we 

use sampling weights to estimate the interval regression model and use 25 imputed values per 

household. In this case, we do not know the true d.g.p. which implies that the assumption of 

conditional (log) normality of household income may not hold, and the imputation and estimated 

models are likely to be miss-specified. We estimate various inequality statistics to assess the 

performance of the imputation model, and overall, the statistics based on imputed values are very 

similar to those based on the observed data. Compared to the observed data statistics, the relative 

gaps are smaller than 5% across almost all statistics. 

For the specific case of Grenadam we only had access to interval-censored data, which is 

insufficient to analyze changes in the distribution of earnings in the country, and, on the other 



hand, we have an increasing proportion of individuals who do not declare income. We apply the 

imputation procedure to address both problems, estimating the interval-censored regression for 

each year, with a set of household-level characteristics and job type characteristics. The results 

suggest that earned income inequality in this country has declined, which coincides with other 

economic performance indicators in the country.  

The three applications we present based on different data sources and under different assumptions 

show that our multiple imputations approaches applied to interval-censored data can yield 

consistent income trends and income inequality for any country that collects income information 

in a censored way. The proposed model can also be applied to some datasets other than the ones 

we discuss in this paper and, at the same time, can be a good alternative to other imputation 

methods used to recover the income distribution from income intervals or top-coded data.   
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